Table 1A: Projected Emission Calculations for Shredding Plant With Water Control 2500 S. Paulina Street, Chicago, IL (Site No. 031600FFO)

			Number of Emission Units				i	Projected		Projected
Plant Component	Maximum Throughpu (tons/hr)	ut	Hammermill	Conveyor Transfer Poi		Cyclone System	Projected* Throughput (tons/yr)	Annual Emission (lbs)		Annual Emission (tons)
Hammermill	160		1	1		0	815,360	2,210		1.10
Feedstock Loading	160		0	1	(4)	0	815,360	1,875		0.94
Re-circulating Z-Box	160		0	0		1	815,360	16,307		8.15
Downstream Ferrous Line	112	(1)	0	6		0	570,752	24	(3)	0.01
ASR Management	48	(2)	0	5		0	244,608	163		0.08
Vehicle Traffic		(I	Please refer to spre	adsheet on next	page)		Total PM Emiss	2,271 ions (tons) =	(5)	1.14 11.42

NOTES:

- (1) Magnetically separated steel is approximately 70% of shredder feedstock design throughput.
- (2) ASR is approximately 30% of shredded feedstock design throughput.
- (3) Less than an estimated 5% of ASR is residual to shredded steel cleaned in the Z-Box; 5% used in calculations. Emissions are for transfer points only.
- (4) Feedstock loading is conducted without the benefit of water for dust control.
- (5) Vehicle emission are adjusted upward to account for traffic 24 hrs per day, 365 days per year.

^{*} Based on 5,096 hours/year operation at maximum capacity.

	Emission Factor		
Emission Source	(lbs/ton)	_	Source Reference (see attached)
Hammermill	0.00257		Table D-10.F, ISRI Title V Applicability Workbook (attached) with water system.
Conveyor Transfer Point	0.00014	(6)	AP-42, Table 11.19.2-2 Emission Factors for Crushed Stone Processing Operations (controlled).
Re-circulating Z-Box	0.020	(7)	Calculations from manufacturer (See Appendix 3).
Feedstock Loading	0.0023		AP-42, Chapter 13.2.4.3; 11.21 mean wind speed (Chicago 44-year average);moisture content of 2.53%; particle size assumes PM-10 or less.

NOTES:

- (6) Conveyor transfer point emission factors are for "controlled" sources, i.e., wet suppression used.
- (7) Manufacturers estimation of emission at (0.187 lbs/min)./(170 tons per hr/60 min. per hr) = 0.066 lbs/ton.

Emission Calculation: Actual Emission = Design Throughput X 5096 hrs/yr X Emission Factor per Applicable Unit X No. of Emission Units

Vehicle Emission Factor									
Average Truck/Loader/ Daily Crane Weight (lbs.) Traffic		Average Vehicle Weight (lbs.)	Total Miles Driven/Day	Vehicle Emission Factor (lb/VMT)	Daily Vehicle Emission (lbs.)				
5,000 18,000 40,000	50 20 130	29,050	51	0.122	6.22				

NOTES:

Vehicle weights are averaged for loaded and emptied.

Total miles driven is based on a round trip per vehicle into and out of the facility, plus estimated loader/crane movement on-site.

Vehicle emission factor determined by applying Equation 3 in AP-42 Chapter 13.2.1 Paved Roads; PM-10 0.015 from Table 13.2.1-1; 120 days of mean precipitation <0.01 inches; silt loading mean of 9.7 g/sq. m.; average vehicle speed = 5 mph